مشروع استكشاف الأهرامات وأسرارها

www.scanpyramids.org
مقدمة
ليس لكونه لغزاً يبلغ من العمر 4500 عاماً، فإنه لن يكتشف!"

هذا هو شعار المشروع العلمي العالمي الذي سيبدأ في الخامس والعشرين من الشهر الجاري تحت رعاية وزارة الآثار وبالتعاون مع كلية الهندسة جامعة القاهرة ومعهد الحفاظ على التراث والابتكار بباريس، حيث سيعتبر الباحثون من "كلية الهندسة جامعة القاهرة" و جامعة "لقال" بكندا وجامعة "ناوجيا" باليابان أحدث التقنيات في مجال المسح وهي: تقنية التصوير (Aka Cosmic)، جزيئات أكاكونية (Radiographic Muons)، الإشعاعي بجزيئات الميون (Infrared)، التصوير الحراري باستخدام الأشعة تحت الحمراء (Particles)، التصوير المساحي (Thermography)، المسح الضوئي وإعادة البناء (Photogrammetry) ثلاثي الأبعاد (Scanning and 3D Reconstruction). ويفيد هؤلاء الباحثون إلى اختراق قلب الأهرامات المصرية دون حفر.

بعد أربعة ألاف سنة من بنائها، لا تزال هذه المباني العملاقة تضل عليها أسرارها، يتعلق أمر الأول بالبناء، وخاصة هرم الملك "خوفو" أخر عجائب الدنيا السبعه الذي لا يزال باقياً حتى
الأنا: حيث لا يزال من المستحيل حتى وقتنا هذا وصف الكيفية التي تم من خلالها بناء أكبر مبنى حجري شهد الإنسان، حيث تتك ويزوا على قاعدة تحتوي مساحتها على 50,000 متر وواحات من 500 مليون طن. كيف يمكن قراءة المصريين من بناء تلك العجيبة في 25 سنة فقط؟ للمجرب هو الأبنية الداخلية للأهرامات، فمن المقارنة بين التخطيط المختلف للأهرامات فإننا نواجه أشياء يصعب تفسيرها ونظراً لكونها آخر نموذج للفرعية في الدولة القديمة (2575 ق.م.) فكان لا بد أن تكون منيعة ولا تتمكى حرمتها. أما قام مشيداً للأهرامات ببناء العديد من البناء حتى يحموا ما تبقى من ملوغهم.

هناك العديد من الاستكشافات التي تمت في الماضي ولكن بإمكانية أننا نمتلكها في وقتنا الحاضر، ونتج عنها بعض التصورات والإحتمالات وجود حجرات سرية.

وبعد المشروع العلمي "استكشاف الأهرامات" مشروعًا غير مسبوق، فهو مشروع واسع النطاق سيبدأ أولى الأهرام العام القادم (نوفمبر) وسيقوم بتثليه الضوء على أربعة من أهم آثار الأمة الرابعة (2575 ق.م.). في منطقة دهشور والتي تبعد حوالي 15 كم جنوب سقارة، حيث ستقوم البعثة بدراسة الهرم الجنوبي والذي يسمى الهرم المروحي وكذلك الهرم الثاني والمعروف باسم الهرم الأحمر وحوض الأهرام الذي قام ببنائه الملك سنفرو (2575 ق.م.) بالإضافة لذلك فعلى هضبة الجيزة وعلى بعد حوالي 20 كم من القاهرة ستقوم البعثة بدراسة هرمى خوفو وخرف وووالدان شيدهما ابن الملك سنفرو وحقيقهما.

هناك أربعة وسائط تقنية غير ضارة سوف يتم تنفيذها: سيتم رسم خريطة حرجيتي لأهرامات من خلال جهاز الرسم الحرجي للكشف عن الاختلافات في الكثافة داخل المهابي الحرجي، حيث سيستخدم الخبراء "جرو كلو باره" إحدى التقنيات المبتكرة لرسم خريطة حرجية، بينما يقوم الخبراء من جامعة "الأعمال" باستخدام تقنية أخرى لاستخدام كامل لرسم خريطة حرجية أكثر دقة. وتهدف التقنيات إلى تحديد ما إذا كان هناك فراغات خلف واجهات الأهرامات أم لا. بالإضافة إلى ذلك، ستقوم ببناء أهرامات من جامعة "ناجوم" بتقنية التصوير الإشعاعي بجزيئات المتوسط الكونية كي يتم التحقق من وجود فراغات غير معروفة داخل الأهرامات وتحديد أماكنها إذا وجدت، وهي التقنيات التي يتم تطويرها في اليابان بواسطة فريق من "البيئة العليا لأبحاث تسريع الطاقة" وجامعة "ناجوم".

ولما ذكر هاني هلال الأساتذة بجامعه القاهرة والتنسيق الرئيسي للمشروع، فإن "هناك العديد من النظريات المتترة من علماء الآثار حول تفسير طريقة إنشاء الأهرامات والغرض من وجود الفراغات بها، غير أن المعنيين بهذا المشروع أغلبهم من الفيزيائيين والمهندسين يهدف توظيف التقنيات لتحديد نتائج مادية ممكسة، ومن ثم يمكن لعلماء الآثار العمل على تفسيرها.

بال المناسبة، سوف تقوم شركة "ICONEM" بعمل حملة للتصوير المساحي ثلاثي الأبعاد لهضبة الجيزة ودفعها بكافة أثرها وبدقة تصل إلى 1 سم، وستحتاج تلك النماذج
الأبعاد لضرورة الجيزة وموقع دهشور بكافة أثره وبدقة تصل إلى 1 سم، وتتاحة تلك النماذج والخريطة للباحثين والعامة عن طريق معهد الحفاظ على التراث والابتكار (HIP)، وهو هيئة غير هادفة للربح.

حصل هذا المشروع على الدعم الكامل من قبل الجهات المصرية، ويهدف بالأساس لتوظيف أحدث التقنيات العلمية والتقنيّة لتطوير الحفاظ على الآثار المصريّة. "هكذا هو تكوين فريق عالمي من الخبراء، ومن ثم مناقشة المناهج النظرية والتقنية على أرض الواقع " صرح بذلك أ. مهدي طيوفي رئيس معهد الحفاظ على التراث والابتكار (HIP) والمسؤول للمشروع.

قام الفريق الياباني خلال السنوات الماضية بإنشاء معمل تجمّد وتحليل للصور المسجلة بالقاهرة بواسطة تقنية التصوير الإشعاعي بجزيئات الميون، وعلق أ.د. هاني هلال قائلاً: "إذا ما ثبتت فعاليّة هذه التقنية، ستتوفر تطبيقها على المدى البعيد على آثار أخرى إما ترميمها أو استكشافها ويمكن أيضاً تطبيقها في بلاد أخرى.".

سيستمر العمل بهذا المشروع حتى نهاية عام 2016، فهل يتم من خلاله كشف النقاب عن الغموض الذي يكتنف الأهرامات والتي طالما حيرة الأثريّين ومحيط علم المصريات؟

يقول مهدي طيوفي، إن "الهدف الأساسي هو التطوير من خلال توظيف نهج علمي جديد، حيث حاولت العديد من بعثات العمل السابقة كشف غموض الأهرامات، وحتى وإن لم يحرزوا نجاحاً ملحوظاً فقد ساهموا في توفير معلومات جديدة، فعلى سبيل المثال اكتشفت مؤسسة EDF منذ 30 عاماً وجود اختلافات في الكثافة تคะแนน بشكل حزنياً داخل هرم خويفو، ودورنا هو أن نجعل من إسهاماتنا العلمية منهجاً يؤدي الى المزيد من المشروعات العلمية البحثية."
مبان أثرية عملاقة
الهرم الجنوبي

ويطلق عليه أيضًا الهرم المنحنى - دهشور

بناء الملك سنفرو، مؤسس الأسرة الرابعة، وهو أول هرم ذو واجهات خارجية ملساء بعد أجيال من الأهرامات المدرجة. ويعتبر شكله المميز بانحناءاته المزدوجة نتاج تغيير في خطة بناءه كما يعترض بعض علماء الآثار. فربما أجبر البناون على تغيير درجة انحناء الهرم من 43 درجة إلى 43 درجة نظراً لمشكلة إنشائية طارئة. ومن الملاحظ الآخر لهذا الهرم: أنه يحتوي على مدخلين أحدهما في الناحية الشمالية والآخر في الناحية الغربية. وتفتح هذه المداخل على ممرين يؤديان إلى حجرتين دفن أحاذاها فوق الأخرى.

الارتفاع: 105 م.
الزوايا: 44° 27' 54" عند القاعدة و 22° 43'
الهرم الشمالي

ويطلق عليه أيضاً الهرم الأحمر - دهشور

وهو ثاني هرم بناء الملك سنفرو في دهشور، ويقع على بعد كيلومتر واحد شمال الهرم المنحني، الذي ربما قد يكون ترك لعدم استقراره. ويبعد زاوية 43 درجة تمكن الدناورون هذه المرة من الوصول على شكل منضبطة. يقع مدخل الهرم بالواجهة الشمالية، على ارتفاع 28 متراً ويؤدي ممر هائج إلى حجرتين أماميتين تقع ثانيهما في منتصف الهرم تماماً وتظل على ممر طويل من سبعة أمتار يؤدي إلى حجرة دفن منفردة.

جانبي قاعدة الهرم: 220م.

الارتفاع: 105 م.

الزوايا: °22’22”43`
هرم خوفو
هضبة الجيزة

بناء الملك خوفو ابن الملك سنفرو. ويعود أكبر هرم تم بناؤه في التاريخ، حيث بلغ ارتفاعه الأصلي 146 مترا قبل تفشي حربه الخارجية في القرن الوسطى وقبل أزالة قهوة. وبعد الهرم الوحيد الذي يضمن ثلاث غرف داخل هيكل الحجري الهائل: واحدة تحت الأرض بعمق 30م تحت قاعدته، وتركز فارغا، والثانية ويطلق عليها غرفة الملكة والتي لايزال وظيفتها محل تداول بين العلماء، أما الثالثة فهي تفتح عنها غرفة الملك وبها تانوت فارغ، وهي الغرفة الوحيدة المفتوحة أمام الزوار في الوقت الراهن. وقد تعرض الهرم قدما للاعمال النهب. ويتم المدخل الحالي أسفل المدخل الأصلي بعشرة أمتار وهو عبارة عن فتحة تحتها الصوص القدامى فيما يعرف بمدخل الأمام وهو الخليفة الذي أمر باستكشاف الهرم عام 820م.

جاني قاعدة الهرم: 230م.
ارتفاع: 59.50م.
الزوايا: 40° 50’ 51"
هرم خفرع
هضبة الجيزة

بناه الملك خفرع ابن الملك خوفو، وهو ثاني أكبر الأهرامات المصرية، بلغ ارتفاعه الأصلي 143.5 مترًا، وله مدخلان في الجانب الشمالي، أحدهما في مستوى الأرضية والأخر يقع على ارتفاع 11 متر من مستوى سطح الأرض. المدخل الأول يفتح على ممر يطل على غرفة فرعية لم تعرف وظيفتها حتى الآن، ثم ينحني الممر حتى يصل إلى الممر العلوي، هذا التصميم الغير مألوف يرجح حدوث تغيير في التصميم أثناء البناء. لم تصمم حجرة الدفن بحيث تقع مكان مرتفع داخل الهرم وذلك على عكس ما هو متبوع في تصميم الثلاثة أهرامات السابقة، بل تم الكشف عن حجرة الدفن في صخور القاعدة، ويوجد بهذه الحجرة تابوت حجري مماثل للتابوت الموجود بهرم الملك خوفو ولكنه أجمل.

جانبي قاعدة الهرم: 215.16 م.
الارتفاع: 143.5 م.
zرويا: 10° 53'
تقنيات مبتكرة
التصوير الحراري باستخدام الأشعة تحت الحمراء

تعتبر تقنية التصوير الحراري باستخدام الأشعة تحت الحمراء التي نفذها "جون كلود باريه" والمعروفة باسم تكنولوجيا (LedLiquid) واحدة من الطرق الواحزة لفهم الأثر من الخارج وما يوجد داخل الأثر أو يُتبَع خلف الواجهات力をampilkan### المبهم. ولكن تطبيقه يتطلب استخدام أجهزة معقدة والاستعانة بخبراء أصحاب خبرات واسعة.

وتتأسس هذه التقنية على قاعدة فيزيائية تقول: إن هناك طاقة إشعاعية تتبع من كافة المواد كل على حسب درجة حرارته. فيتنتج عن هذه الطاقة موجات أشعة تحت حمراء يمكن قياسها بكميات مجهزة بأجهزة استشعار. وتولد الكاميرات صور لم يكن عندها درجة حرارة معينة، ويستخدم هذا الشكل لتحديد مدى الطاقة الحرارية في المنازل ذات الزوارق المنخفضة، وتوضيح مكان الياقات في المنازل. إذا فإن تيار الهواء البارد يمثل باللون الأزرق، في حين أن المصادر الحرارة يمثلون اللون الأحمر. وبإمكان هذه الكاميرات المتخصصة أيضاً تحديد الإشعاعات الحرارية للمواد بشكل كمي. فكل مادة تنتصر أو تنقل أو تعكس الإشعاع بكيفية مختلفة، وهو ما يسمى بالخصائص الإشعاعية الحرارية. فمثلاً تحت الشمس، تكون الأجزاء الداخلية لسيارة بيضاء أقل حرارة من تلك الموجودة داخل سيارة سوداء، وعلى فيضح جون
كلود باريه "أنه في نفس درجة الحرارة، يمكن أن تختلف درجات الإشعاع الحراري في حجر الجرانيت والحجر الجيري.

بالنسبة للأهرامات، فإن اختلافات درجة الانبعاث الحراري تساعده على التأكد من كون أسطح الأحجار (والتي تحمل نفس درجة اللون بفعل العوامل الجوية والرمال والثلوث) ممتلأت أم لا. ويعلق باريه قانونًا: "أكثر ما يبدو هو احتمالية وجود بقع باردة على الأسطح، والتي من الممكن أن تكون مجموحة، وبالتالي قد تكشف عن تجاوز فائق أو حجراً أو سرقة داخل الأهرامات.

وهكنا هو وضع خريطة حرارية دقيقة لأهرامات دهشور والجيزة. وهي خريطة ديناميكية، كون الأهرامات شأنها شأن باقي المباني تقوم بامتصاص الحرارة من أشعة الشمس أثناء النهار، وتشبعها ثانية أثناء الليل. ويتذكرون ذلك بالتفاوت في درجات حرارة للواجهات الأربعة للأهرامات قبل شروق الشمس بنصف ساعة، عندما يكون المبنى قد تخلّى عن أكبر قدر من الطاقة الحرارية أثناء الليل ويكون في أشد حالاته. ويتذكر هذه العملية وقت الظهيرة وأخر النهار. وخلال بضعة أيام، سيقوم كلود باريه بتسجيل ملاحظات الألاف من الصور الحرارية للأهرامات ووضعها على برنامج كمبيوتر يمكن من خلاله التوصل إلى البصمة الحرارية للأهرامات.
التصوير الحراري المعدل

يشيع استخدام التصوير الحراري باستعمال الأشعة تحت الحمراء في صناعة الطائرات لاختبار المواد دون تدمير. ويتم القياس عن طريق تسخين المادة أو العنصر أو الجسم المراد اختباره قليلاً، وعلى إنه كأساً كان هناك أي مادة أو جسم غير ربع مرن، فسوف تتبع البصمة الحرارية تحديده من خلال التباين الطيفي في درجات الحرارة. ولا يمكن قياس هذه البيضمة على الفور ولكنها تظهر بعد مرور فترة معينة وفقاً لعمق المادة أو الجسم الغريب عن السطح. ويتضح الحصول على القياسات الحرارية عن طريق كاميرا تعمل بالأشعة تحت الحمراء حيث تقوم بتسجيل التغيرات التي تطرأ على درجة حرارة السطح في شكل صور حرارية بمرور الوقت.

ويمكن عدد من التقنيات المتاحة لتطوير الصور الحرارية التي تم الحصول عليها، حيث تتبع وتحديد العناصر الغريبة. وبالمثل، توجد العديد من تقنيات التسخين لتحسين العنصر أو الجسم الخاضع للاختبار. أحد هذه التقنيات يتألف من وضع مصدر حراري في صفيف متكررة محددة مسبقًا، وتتبع الاستجابة الحرارية التي تم الحصول عليها خلال كاميرا تعمل بالأشعة تحت الحمراء. ومن ثم يتم معالجة الصور المسجلة، ويتم تقليصها لصورة واحدة تكثف فيها كافة المعلومات المتعلقة بالخلال الداخلي للعنصر.
في حالة العناصر الكبيرة كالمباني، يكون الإشعاع الشمسي مصدرًا حراريًا جيدًا، يوفر تنوعات دورية طبيعية على مدى طويل (على سبيل المثال الدورة اليومية: نهار/ليل). والأمر المثير، أنه كلما كان التنوع الدوري للحرارة بطيئًا، كانت الموجة الحرارية المتولدة التي تخترق المادة أعمق. لذا، تكون الموجة الحرارية المتولدة من دورة النهار/ليل ذات قدرة على استكشاف عدّة سنتيمترات داخل حائط خرساني، في حين أن التغيير الحراري الناجمة عن الدورة السنوية الموسمية (درجة حرارة عالية في الصيف ومنخفضة في الشتاء) بولد موجات حرارية ذات قدرة اختراقية أعمق. ولذا ستكون التنبؤات الموسمية السنوية في درجات الحرارة هي المنهج المثالي لدراسة الأهرامات بحثًا عن تنويعات داخلية محتملة بالقرب من أسطحها.
الاستكشاف باستعمال جزيئات الميون

تنشأ جزيئات الميون في الطبقات العليا من الغلاف الجوي الأرضي حيث تتكون من اصطدام الأشعة الكونية مع ذرات الغلاف الجوي. وتسقط على الأرض بسرعة ضوء تقريبا وكمية ثابتة تقترب من 10000 جزيء ميون لكل متر مربع في الدقيقة الواحدة. وكما هو الحال بالنسبة للأشياء السينية التي تمر عبر أجسامنا وتسمح برؤية الهيكل العظمي، فإنه يوسع هذه الجزيئات الأولية أن تمر بمنتهى السهولة خلال أي مبنى، حتى وإن كان يتكون من أحجار كبيرة وسحابة كالجبال. فالكائنات الخاصة بجزيئات الميون، إذا ما وضعت في أماكن ملائمة (داخل الهرم على سبيل المثال وأسفل حجرة محتملة لم تكتشف بعد) بوسعة أن تبين الأجزاء الفارغة (التي تخترقها جزيئات الميون دون عائق) عن طريق تراكم جزيئات الميون عبر الزمن وذلك من مناطق أكثر عمقا حيث يتم امتصاص بعضها أو يتم صده. غير أن أصعب جزء في هذه التقنية هو كيف نستطيع تلك الأشعة بدرجة حساسية عالية عن طريق توظيف أفلام من أكاسيد الفضة.
كتكل المستخدمة في الأفلام الفوتوغرافية، أو أنواع من المستخلبات الكيميائية، ومن ثم جمع بيانات كافية (على مدار أيام أو شهور) للتأكد على الاختلافات المتواجدة في النسيج الصخري. يقوم فريق علمي من جامعه "نابويا" اليابانية باستخدام تكنولوجيا التصوير الإشعاعي بجزيئات الميون لمتابعة وملاحظة البراكين. ومؤخرًا طورت KEK التكنولوجيا لاستعمالها في استكشاف مفاعل فوكوشيما النووي.
التصوير المساحي والليزر

سيقوم المهندس إيف أويلمان من ICONEM بدمج تقنيات عديدة للرفرع المساحي والليزر لرسم خرائط دقيقة للتشتات الأثري للضيتي دهشور والجزيرة، بكل آثارها وأهراماتها ومعابدها وتمثال أبو الهول.

مؤخرًا، قام معهد INRIA الفرنسي بتطوير تقنيات حدثية لدمج عد كبير من الصور الجوية والمعلومات المساحية في نموذج ثلاثي الأبعاد وإعادة بناء مواقع أثريه في بومبي وسوريا.
وافغانتان، ويتم ذلك من خلال التقاط عدد كبير من الصور ذات الجودة العالية، ودمج المعلومات المحتوى في تلك الصور داخل برنامج كمبيوتر يتم من خلاله الحصول على نموذج رياضي ثلاثي الأبعاد ذو دقة عالية تصل إلى عدد ستين مترات، وهو ما يسمح لنا بتحديد أماكن الآثار بمنتهى الدقة وتحديد المستويات والمنحدرات والطرق القديمة والممرات. كما استطعنا هذه التضاريس الدقيقة أدلة على أماكن وأشكال المياه المحتملة تواجدها واستكشافها، ويمكن أيضاً من خلال هذا النموذج الرياضي ثلاثي الأبعاد الاستدلال على الطريق المثلى لترميم أي موقع أثري. ويسمح التصوير المساحي بالعمل ودمج مقاييس مختلفة مستخدمة في النموذج الرقمي كما يوضح إيف أوبلمان. ولاستكمال هذه البعثة يقوم فريق العمل بإجراء مسح صوتي بالليزر داخل الآثار، وذلك في الأماكن المغلقة أو المظلمة والتي لا يصلح فيها التصوير المساحي.